New England Radio Discussion Society: "Electronics for Amateur Radio operators"

"Getting down to nuts and volts"

Phase One, July 2016

Sources of electricity: Static electricity

Static electricity ain't necessarily static

In cloud build-up

"Discharges" can occur between clouds and ground, or ground and clouds

Sources of electricity: chemical cells and batteries

Sources of electricity: electro-mechanical

generators

Sources of electricity: solar panels

But, what is electricity, anyway?

For some answers look at the nature of the elements.

The *Periodic Table* gives clues to the electrical properties of elements.

TABLE PERIODIC TABLE OF THE ELEMENTS

Atomic Number	Element Name	Symbol	Atomic Weight	Electrons/Shell K L M N O P Q	Discovered	Comments
1	Hvdrogen	Н	1.007	1	1766	Active gas
2	Helium	He	4.002	2	1895	Inert gas
3	Lithium	Li	6.941	2 1	1817	Solid
4	Beryllium	Be	9.01218	2 2	1798	Solid
5	Boron	В	10.81	2 3	1808	Solid
6	Carbon	Ĉ	12.011	2 (4)	Ancient	Semiconductor
7	Nitrogen	N	14.0067	2 5	1772	Gas
8	Oxygen	0	15.9994	2 6	1774	Gas
9	Fluorine	F	18.998403	2 7 1	1771	Active gas
10	Neon	Ne	20.179	2 (8))	1898	Inert gas
11	Sodium	Na	22,98977	2 8 1	1807	Solid
12	Magnesium	Mg	24.305	2 8 2	1755	Solid
13	Aluminum	Al	26,98154	283	1825	Metal conductor
14	Silicon	Si	28 0855	2 8 4	1823	Semiconductor
15	Phoenhorus	P	30 97376	2 8 5	1669	Solid
15	Sulfur	S	32.06	2 8 6	Ancient	Solid
17	Chlorine	CI	35 453	2 8 7	1774	Active gas
17	Argon	Ar	39 948	2 8 (8)/	1894	Inert gas
10	Potassium	K	39.0983	2 8 8 1	1807	Solid
20	Calcium	Ca	40.08	2 8 8 2	1808	Solid
20	Scandium	Sc	44 9559	2 8 9 2	1879	Solid
21	Titanium	Ti	47 90	2 8 10 2	1791	Solid
22	Vanadium	v	50 9415	2 8 11 2	1831	Solid
23	Chromium	Ċr	51 996	2 8 13 1	1798	Solid
24	Manganasa	Mn	54 9380	2 8 13 2	1774	Solid
25	Iron	Fe	55 847	2 8 14 2	Ancient	Solid (magnetic)
20	Cohalt	Co	58 9332	2 8 15 2	1735	Solid
21	Nickel	Ni	58 70	2 8 16 2	1751	Solid
20	Copper	Cu	63 546	2 8 18 1	Ancient	Metal conductor
29	Zino	Zn	65 38	2 8 18 2	1746	Solid
30	Colline	Ga	69 72	2 8 18 3	1875	Liquid
22	Cormonium	Ge	72 59	2 8 18 4	1886	Semiconductor
32	Arsonic	4	74 9216	2 8 18 5	1649	Solid
22	Salanium	Se	78.96	2 8 18 6	1818	Photosensitive
25	Dromino	Br	79 904	2 8 18 7 .	1826	Liquid
33	Diomine	Kr.	83.80	2 8 18 (8)	1898	Inert gas
30	Rrypton	Ph	85 4678	2 8 18 8 1	1861	Solid
31	Strontium	Sr	87 62	2 8 18 8 2	1790	Solid

Copper Atom

The Coulomb is a unit of charge

1 coulomb = 6.24 x 10¹⁸ electrons

That's 6.24 million million million electrons, or a quintillion electrons

 6.24×10^{18} Electrons = 1 Coulomb of Charge

 12.48×10^{18} Electrons = 2 Coulombs of Charge

The electroscope

An instrument invented in the 1600s by Dr. Wm. Gilbert.

It detects static charges.

(b) Negative Repels Negative. (c) Unlike Charges Attract.

e = Electron (negative)

Remember: unlike charges attract

What is current?

- Electrons normally revolve around the nucleus of each atom of copper in a wire, but when electrical pressure--called *voltage*---from a battery or generator or solar panel is applied, some of these electrons are forced out of their orbits and pass from atom to atom along the length of the wire.
- These electrons are called *free electrons* and come from the outer orbit of the atoms.

Electron flow

Instantaneous flow (an analogy)

One ampere (1A) is the flow of 62,000,000,000,000,000,000,000 electrons (one Coulomb) per second past a given point!

On your calculator, scientific notation indicates there are 18 zeroes in this number. It will show on your calculator as 62¹⁸ or 6.2¹⁹. Either entry is correct and okay.

CURRENT UNITS

Name	Symbol	Value
Picoampere	pA	$=\frac{10^{-12}}{1}\\=\frac{1}{1\ 000\ 000\ 000\ 000}$
Nanoampere	nA	$10^{-9} = \frac{1}{1\ 000\ 000\ 000}$
Microampere	μA	$10^{-6} = \frac{1}{1\ 000\ 000}$
Milliampere	mA	$10^{-3} = \frac{1}{1\ 000}$
Ampere	Α	$10^{\circ} = 1$
Kiloampere	kA	$10^3 = 1000$
Megaampere	MA	$10^6 = 1\ 000\ 000$
Gigaampere	GA	$10^9 = 1\ 000\ 000\ 000$
Teraampere	TA	$10^{12} = 1\ 000\ 000\ 000\ 000$

Notice the use of the capital letter A

Current flows and safety

You can measure electron flow with an *ammeter*

What is voltage?

- Voltage is the <u>potential</u> energy that makes the electrical current flow in a circuit by pushing the electrons around. The unit of voltage is the *volt*.
- It is also called electromotive force, or *EMF*.

< Negative potential !

"Fields"

• Electrostatic fields and magnetic fields are twins. They are two halves of a duality in the universe.

A *voltmeter* can measure electrostatic field differences, or *potential*, or *EMF*

Voltage notation always uses an uppercase V

Note the red horseshoe magnet in this classroom voltmeter

What is *resistance*?

- Resistance is the opposition that a substance offers to the flow of electric current.
- Resistance is often represented using the uppercase letter *R*.

Resistance and Resistivity

The Greek letter *rho* denotes *resistivity*, not *resistance*

Resistivity of common materials

Resistivities at 20°C				
Material	Resistivity			
A <mark>luminum</mark>	2.82			
Copper	1.72			
Gold	2.44			
Nichrome	150.			
Silver	1.59			
Tungsten	5.60			

The unit of resistance

 The standard unit of resistance is the ohm, sometimes written out as a word, but usually symbolized by the Greek letter omega.

The *schematic* symbol usually looks like this:

Now, one volt will force one ampere of current through one ohm of resistance

Stated differently ...

 When an electric current of one ampere (1A) passes through a component across which a *potential* difference (or voltage) of one volt (1V) exists, then the resistance of that component is one ohm. Schematics are diagrams that show how electrical and electronic circuits are wired. Schematics use symbols. Schematics are the "roadmaps" that reflect the configuration of circuits.

Again, here's the symbol for a resistor. —WW—

Here are a few more symbols used on schematic diagrams:

AMMETER -A-

MULTICELL

The simplest circuit

The water wheel analogy

Tying it together

Another kind of resistor

 Electron flow is the same + in all parts of the "series circuit"

• The current is the same in all parts of a series circuit, just like water flowing through one continuous pipe Current here = 5A Current here = 5ACurrent here = 5A Current here = 5A

• Series circuits can have various types of devices in series

• Here's a series circuit comprised of three different-value resistors

The lower case k is shorthand for a thousand. i.e. 3k is 3000.

• The sum of the voltages across each component in a series circuit is equal to the source voltage

So, have you got all this circuit stuff figured out yet? There is one more thing I think you should know: the difference between series and parallel circuits. *Take your pick*!

Series and parallel DC sources

Sources can be connected in series or in parallel.
Photovoltaic panels are shown here, but the DC source could be chemical cells or batteries.

Current flow in a parallel circuit

Thanks DE Al2Q